Posts

Beyond “Move Fast and Fail Fast”: Balancing Speed, Security, and … Sanity in Software Development (with Podcast)


Move fast and fail fast

In software development, the mantra “move fast and fail fast” has become both a rallying cry and a source of considerable debate.

It champions rapid iteration, prioritizing speed and output, often at the perceived expense of meticulous planning and architectural foresight. This approach, deeply intertwined with the principles of agile development, presents a stark contrast to the traditional model of lengthy planning cycles, rigorous architecture design, and a focus on minimizing risk through exhaustive preparation.

Fail fast

The allure of “fast” is undeniable. In today’s competitive market, speed to market can be the difference between success and failure. Rapid prototyping allows for early user feedback, facilitating continuous improvement and ensuring the product aligns with real-world needs. In essence, it’s about validating hypotheses quickly and pivoting when necessary. This iterative approach, inherent in agile methodologies, fosters a culture of adaptability and responsiveness, crucial in environments where change is the only constant.

So, “fail fast” refers mostly to a fast validation of the MVP (minimum viable product) and drop it if the results are unsatisfactory. This is, in general, very good because it is an optimal usage of resources.

Speed vs. Integrity

However, the emphasis on speed can raise legitimate concerns, particularly regarding security and long-term architectural integrity.

The fear is that a “move fast” mentality might lead to shortcuts, neglecting essential security considerations and creating a foundation prone to technical debt.

This is where the misconception often lies: “fast” in this context does not necessitate “insecure” or “bad.” Rather, it implies a prioritization of development output, which can, and should, be balanced with robust security practices and a forward-thinking architectural vision.

But, how can this forward-thinking be achieved, when the team is focused mostly on delivering value to validate with customers the assumptions made?

The key lies in understanding that agile development, when implemented effectively, incorporates security and architecture as an integral part of the process.

Concepts like “shift left security” emphasize integrating security considerations early in the development lifecycle, rather than as an afterthought.

Automated security testing, continuous integration/continuous deployment (CI/CD) pipelines with security gates, and regular security audits can be woven into the fabric of rapid development, ensuring that speed does not compromise security.

Validating early in the process means also that the not only the product is proven to meet the expectations, but also the architecture it is built upon.

The traditional approach

On the other hand, the traditional approach, with its emphasis on extensive planning and architecture, offers the perceived stability of a well-defined blueprint.

However, this approach carries its own risks. The extended planning phase can lead to delays, rendering the final product obsolete by the time it reaches the market. Moreover, the rigid nature of pre-defined architectures can hinder adaptability, making it difficult to respond to unexpected changes in user needs or market dynamics. The risk of “failing due to delays and lack of adaptation” is a real threat in fast-paced environments.

The modern software developer must navigate this tension, finding a balance between speed and stability. This involves adopting a pragmatic approach, leveraging the benefits of agile methodologies while mitigating the associated risks.

This can involve:

  • Establishing clear security guidelines and incorporating them into the development process. Having a SSDLC is mandatory when having to deliver fast.
  • Prioritizing a modular and adaptable architecture that can evolve with changing requirements. Modules should be possible to be implemented quickly and dropped without a lot of pain if they prove to be unsuccessful.
  • Implementing robust testing and monitoring to identify and address issues early on. A CI/CD pipeline will allow the team to focus more on delivering new features than testing and integrating all the time.
  • Fostering a culture of continuous learning and improvement, where developers are encouraged to experiment and innovate, while also being accountable for security and quality.
  • Utilizing threat modeling and risk assessment early in the design process. Threat modeling contains a risk assessment, which when done properly will prevent major issues later.

Instead of Conclusions:  my experience

Ultimately, the most effective approach is not about choosing between “fast” and “slow,” but about finding the right cadence of delivering value for each specific project .

The goal is to deliver constantly small pieces of code that bring value while avoiding failure altogether. If deliverables are constantly validated, a failure can only be of a small deliverable increment, which can be either quickly improved, completely removed or entirely replaced with something else.

Important is to learn from it quickly and adapt, ensuring that software development remains a dynamic and evolving process.

When I run a project, I define the goal and the high level path to achieve that goal. Sometimes this path is clear, sometimes many experiments are needed, and some will fail, some will succeed.

The post Beyond “Move Fast and Fail Fast”: Balancing Speed, Security, and … Sanity in Software Development (with Podcast) first appeared on Sorin Mustaca on Cybersecurity.

Understanding Defense in Depth in IT Security

The recent outage caused by Crowdstrike’s faulty update has create a lot of discussions. I wrote a post on LinkedIn where I asked the readers why are IT professionals using Crowdstrike on some systems that shouldn’t be in need of such protection in the first place.

The answers in various groups were mostly related to:

  • protect everything against everyone
  • assume the worse
  • assume that you are compromised.

I do not agree with such a shallow answer. And this raises a question about Defense in Depth.

Defense in Depth

Defense in Depth is a cybersecurity strategy that employs multiple layers of security controls to protect an organization’s assets and information. This approach is based on the premise that no single security measure is foolproof. By implementing several layers of defense, even if one control fails, others are in place to mitigate risks. The concept is inspired by military defense strategies, where a series of defensive positions are used to delay or prevent an attack.

A common misconception about Defense in Depth is that it requires identical security measures across all layers of an IT environment. In reality, this is neither necessary nor practical. Different layers have different requirements based on their specific functions, vulnerabilities, and the types of threats they are exposed to. Applying the same controls universally can lead to inefficiencies, increased costs, and potential performance issues.

In my opinion, this is what happened in many cases during the Crowdstrike outage: admins installed the EDR solution simply on all available devices, without doing an analysis of the threats they are exposed to. This is called threat modeling, and the first step after identifying the assets to protect is to analyze their threat landscape: this is the set of threats they are potentially exposed to. Once the potential threats are identified, then the appropriate security controls can be defined. But, it is important that the right controls are used based on the risk level of the potential threat. The mistake here is that people try to protect against any potential risk, no matter how improbable it might be. So, it is not worth to protect against every potential risk.

But, this operation is, at least at first sight, expensive, time consuming and very few people know how to do it.

So, what happens in most cases is that people consider to be cheaper to buy additional licenses and accept easily a slight reduction in performance due to the tool monitoring everything (“throw” more hardware on it).

And this might be OK, if everything works perfect all the time. Well, it doesn’t !

If this sounds too theoretical, then let’s have a closer look at various layers where applications run.

  • Running at the Web Application Layer: This layer might need strong authentication mechanisms, input validation, and encryption to protect against web-based attacks such as SQL injection or cross-site scripting (XSS).
  • Running at the Network Layer: Here, firewalls, intrusion detection systems (IDS), and virtual private networks (VPNs) are more appropriate to guard against network-based threats like DDoS attacks or unauthorized access.
  • Running at the Endpoint Layer: Devices such as laptops and mobile phones might require antivirus software, device encryption, and endpoint detection and response (EDR) solutions to prevent malware infections and data breaches.

Each layer of security addresses different risks, and the controls should be tailored to the specific threats and the environment.

For instance, a high-value database containing sensitive customer information might warrant multiple layers of encryption, strict access controls, and regular auditing. In contrast, a low-value, non-critical application might only require basic security measures.

Of course, there are applications having parts that run on more than one layer. When this happens, then you must correctly create the threat model and identify the risks at each layer.

For example, if you have a computer which just displays flights schedules, without having an interaction with the exterior other than retrieving data from an internal webservice, you probably do not need a dedicated endpoint security product for it.

Why? Because you will not allow access to the machine other than the service account for patches and running the required software.

If you’re unsure, and the machine runs Windows, than the default Defender is more than enough.

Create a Threat Model for your endpoints

If you don’t know how to create a threat model for an endpoint (and not only Windows, MacOS and Linux are equally affected), here is a list of potential threats and their mitigations.

Important note:
If you apply correctly the principles of Defense in Depth, you will NEVER all all these potential risks applicable to your devices.

Even if you remotely consider that some or all these risks can occur, do not forget that the Risk is proportional to the Probability of occurrence and Impact effect:

  • Probability of occurrence – what are the chances that the risk actually occurs: Very probably, Probably, Sometimes, Unlikely, Never.
  • Impact effect: Catastrophic, Very high, High, Medium, Low.

Potential Risks on an Endpoint

  • Malware Infections

    • Risk: Viruses, Trojans, ransomware, spyware, and other malicious software can compromise the system.
    • Security Controls:
      • Antivirus/anti-malware software
      • Regular system scans and updates
      • Application whitelisting
      • Sandboxing suspicious files
      • Backup with versioning control (good for ransomware attacks)
  • Unpatched Software

    • Risk: Vulnerabilities in outdated software can be exploited by attackers.
    • Security Controls:
      • Automated patch management systems with rollback functionality
      • Regular software updates
      • Vulnerability scanning tools
      • Centralized patch distribution
  • Unauthorized Access

    • Risk: Unauthorized users may gain access to the endpoint, leading to data breaches or system compromise.
    • Security Controls:
      • Strong password policies
      • Multi-factor authentication (MFA)
      • User account control (UAC)
      • Role-based access controls (RBAC)
  • Data Theft

    • Risk: Sensitive data may be copied, transmitted, or stolen from the endpoint.
    • Security Controls:
      • Full disk encryption (e.g., BitLocker)
      • Data loss prevention (DLP) tools
      • USB port control and removable media encryption
      • Secure backup solutions
  • Physical Theft

    • Risk: The endpoint itself may be physically stolen, leading to loss of data and access to the network.
    • Security Controls:
      • Physical security measures (locks, secure storage)
      • Device tracking and remote wipe capabilities
      • Full disk encryption
      • BIOS/UEFI passwords
  • Drive-by Downloads

    • Risk: Malicious websites may automatically download and install malware without user consent.
    • Security Controls:
      • Web filtering and browser security plugins
      • Regular updates to browsers and plugins
      • Application whitelisting
      • Disabling automatic execution of scripts in browsers
  • Network-based Attacks

    • Risk: Attackers may exploit vulnerabilities in the network to compromise the endpoint.
    • Security Controls:
      • Personal firewall
      • Network segmentation
      • Secure VPN connections
      • Intrusion detection and prevention systems (IDPS)
  • Misconfigured Security Settings

    • Risk: Insecure configurations can leave the endpoint vulnerable to attacks.
    • Security Controls:
      • Regular security audits and compliance checks
      • Hardening guides and best practices (e.g., CIS benchmarks)
      • Group policies for centralized management
      • Security baselines and templates

Potential Human Risks

Phishing Attacks

  • Risk: Users may be tricked into divulging sensitive information or downloading malicious software through deceptive emails or websites.
  • Security Controls:
    • Email filtering with anti-phishing capabilities
    • User awareness training
    • Web filtering and reputation services
    • Multi-factor authentication (MFA)

Insider Threats

  • Risk: Malicious or negligent insiders may intentionally or unintentionally cause harm.
  • Security Controls:
    • User activity monitoring and logging
    • Least privilege principle
    • Endpoint detection and response (EDR)
    • Insider threat detection tools

Instead of conclusion: Balancing Security and Usability

The most critical aspect of Defense in Depth is balancing security and usability.

Over-securing can lead to decreased productivity, increased costs, and user dissatisfaction.

For instance, implementing multi-factor authentication (MFA) at every step might significantly slow down legitimate users, leading to frustration and potential workarounds that can undermine security.

A well-designed Defense in Depth strategy finds the right balance by applying strict controls where necessary and lighter measures where the risk is lower.

The goal is to create a robust security posture that protects against a wide range of threats without overburdening the system or its users.

 

The post Understanding Defense in Depth in IT Security first appeared on Sorin Mustaca on Cybersecurity.

Securing the Secure: The Importance of Secure Software Practices in Security Software Development

In an increasingly interconnected digital world, the importance of secure software cannot be overstated.

Many people think that by using security software all their digital assets become automatically secured.

However, it is crucial to recognize that security software itself is not inherently secure by default.

To ensure the highest level of protection, security software must be designed, developed, and maintained using secure software practices.

This blog post emphasizes how important it is to incorporate secure software development practices within the broader context of the secure software lifecycle for security software.

 

Understanding the Secure Software Lifecycle

The secure software lifecycle encompasses the entire journey of a security software product, from its inception to its retirement.

It consists of multiple stages, such as :

  • Requirements gathering/Analysis
  • Design,
  • Implementation
  • Testing,
  • Deployment
  • Maintenance
  • Retirement

Incorporating secure software practices at each step is essential to fortify the software’s defense against potential vulnerabilities and attacks.

 

Implement Secure Software Development Practices

Implementing secure software practices involves adopting a proactive approach to identify and address security concerns from the outset.

Some fundamental practices include:

a. Threat Modeling:

Conducting a comprehensive analysis of potential threats and vulnerabilities helps developers design robust security measures. By understanding potential risks, developers can prioritize security features and allocate resources accordingly.

b. Secure Coding:

Writing code with a security-first mindset minimizes the likelihood of exploitable vulnerabilities. Adhering to coding standards, utilizing secure coding libraries, and performing regular code reviews and audits contribute to building a solid foundation for secure software.

c. Secure Configuration Management

Properly configuring the security software environment, such as secure network settings, encryption protocols, and access controls, is vital for safeguarding against unauthorized access and data breaches.

d. Regular Security Testing

Rigorous testing, including vulnerability assessments, penetration testing, and code analysis, helps identify and rectify security flaws. It ensures that security software operates as intended and remains resilient against evolving threats.

 

The Bigger Picture: Security in a Connected World

Secure software development practices extend beyond the development of security software alone. They have a broader impact on the overall security ecosystem. The adoption of secure software practices sets a precedent for other software developers, promoting a culture of security awareness and accountability.

Moreover, incorporating secure practices in security software helps foster trust among users and organizations. It instills confidence that the software is diligently designed to protect sensitive information and critical systems. Secure software practices also contribute to regulatory compliance, enabling organizations to meet stringent security standards and safeguard user data.

 

The Vital Importance of Secure Software: Consequences of Security Vulnerabilities for Security Companies

The implications of security vulnerabilities go beyond the immediate risks they pose to users and organizations. For security companies, the consequences of having products with security vulnerabilities can be severe, impacting their reputation, customer trust, and overall business viability.

Here are just a few negative consequences that security companies may face if their products fall prey to security vulnerabilities:

  1. Reputation Damage: Security companies are built on trust and reliability. When a security product is discovered to have vulnerabilities, it erodes customer confidence and tarnishes the company’s reputation. The perception that a security company cannot protect its own software casts doubt on its ability to safeguard sensitive information and defend against external threats. This loss of trust can be challenging to regain, resulting in a significant blow to the company’s credibility and market standing.
  2. Customer Loss and Dissatisfaction: Security vulnerabilities in software can lead to compromised systems, data breaches, and financial losses for users. In such instances, customers are likely to seek alternative security solutions, abandoning the vulnerable product and the company behind it. This loss of customers not only affects the company’s revenue but also demonstrates a lack of customer satisfaction and loyalty. Negative word-of-mouth can spread rapidly, deterring potential customers from considering the security company’s offerings in the future.
  3. Legal and Regulatory Consequences: Security vulnerabilities can have legal and regulatory implications for security companies. Depending on the nature and severity of the vulnerabilities, companies may face legal action from affected parties, resulting in costly litigation and potential financial penalties. Furthermore, security companies operating in regulated industries, such as finance or healthcare, may face compliance violations, leading to fines and reputational damage. Compliance with security standards and industry regulations is critical for security companies to maintain credibility and avoid legal consequences.
  4. Increased Operational Costs: Addressing security vulnerabilities requires significant resources, both in terms of time and finances. Security companies must invest in dedicated teams to investigate, fix, and release patches or updates to address vulnerabilities promptly. Additionally, engaging in incident response, customer support, and post-incident communication efforts adds to the operational costs. Failure to address vulnerabilities in a timely and efficient manner can exacerbate the negative consequences, making the recovery process more challenging and expensive.

 

In an era where security breaches and cyber threats are prevalent, relying solely on the notion that security software is inherently secure is a grave misconception. Secure software practices are indispensable for developing robust and resilient security software. By implementing these practices throughout the software lifecycle, developers can significantly mitigate the risks associated with vulnerabilities and ensure the highest level of protection for users and organizations alike. Embracing secure software practices sets the stage for a safer digital landscape, bolstering trust, and reinforcing security across the entire software development ecosystem. By prioritizing security, security companies can protect their customers, preserve their reputation, and maintain a competitive edge in the ever-evolving landscape of cybersecurity.

 

If you want to know more about SSDLC, contact Endpoint Cybersecurity for a free consultation.

Secure Software Development Lifecycle (SSDLC)

The post Securing the Secure: The Importance of Secure Software Practices in Security Software Development first appeared on Sorin Mustaca on Cybersecurity.

Portfolio Items